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SUMMARY

Governing equations for a two-phase 3D helical pipe �ow of a non-Newtonian �uid with large particles
are derived in an orthogonal helical coordinate system. The Lagrangian approach is utilized to model
solid particle trajectories. The interaction between solid particles and the �uid that carries them is
accounted for by a source term in the momentum equation for the �uid. The force-coupling method
(FCM), developed by M.R. Maxey and his group, is adopted; in this method the momentum source term
is no longer a Dirac delta function but is spread on a numerical mesh by using a �nite-sized envelop
with a spherical Gaussian distribution. The in�uence of inter-particle and particle–wall collisions is also
taken into account. Copyright ? 2005 John Wiley & Sons, Ltd.
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INTRODUCTION

Because of space saving and, more importantly, the enhancement of mixing achieved due
to the secondary �ow, helical pipes are widely used in industry. The centrifugal force in-
creases the axial velocity near the pipe outer wall and decreases that near the pipe inner wall.
At the pipe outer wall, the higher velocity decreases the thermal resistance considerably, re-
sulting in a higher heat transfer coe�cient between the �uid and the pipe wall [1]. Cheng
and Kuznetsov [2, 3] numerically investigated heat transfer in a fully developed laminar �ow
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of a non-Newtonian �uid in a helical pipe with the momentum and energy equations derived
in an orthogonal helical coordinate system.
Two-phase �ow can be modeled by two approaches, the Eulerian=Eulerican and the Eulerian=

Lagrangian. In the Eulerian=Eulerican approach, both the solid phase and carrying �uid are
treated as continuum phases. This approach is often used to deal with large concentrations
of small particles. In the Eulerian=Lagrangian approach, however, only the carrying �uid is
described as a continuum and the continuity and momentum equations for the �uid phase
are solved on an Eulerian grid. The particle motion is governed by Newton’s second law.
When particles are moving in the �uid, the momentum is exchanged between the particles and
the �uid. This e�ect is described by a source term introduced into the momentum equation
for the �uid phase. This approach has advantages in predicting particle trajectories and is
suitable for a low concentration of large particles [1, 4, 5]. The main practical signi�cance of
the results of this paper is in predicting the dynamics of large particles in aseptic processing
of food, in which information about individual particle trajectories is needed; therefore, the
Eulerian=Lagrangian approach is utilized.
The most accurate results in modelling two-phase �ow with large particles are obtained by

direct numerical simulation of these �ows [6, 7]. However, this method is hard to implement
and is very costly computationally. This approach is characterized by the need to remesh
the domain to accommodate the motion of the particles as well as to map the �nite element
mesh onto the parallel processors. An alternative numerical strategy utilizes the distributed
Lagrange multiplier method [8]. Another numerical method frequently used in the literature
utilizes immersed boundary schemes [9, 10]. Maxey et al. [11] and Maxey and Patel [12]
introduced a forced-coupling method (FCM), the basic idea of which is to model the presence
of each particle in the �ow by a low-order expansion of �nite-valued, force mutlipoles applied
as a distributed body force on the �ow. Fluid �lls the whole domain, including the volume
occupied by the particles, and the Navier–Stokes equations with this body force term are solved
throughout the domain on a �xed numerical mesh. Based on the �uid �ow �eld, the particle
trajectories and velocities are determined. Lomholt and Maxey [13] extended FCM to include
higher-order e�ects by introducing force dipole terms and generalized this approach to bounded
domains. To address the collision problem, Glowinski et al. [8] adopted a collision strategy
described below, which is based on activating an arti�cial repelling force at a close range.
Aseptic processing of fruit juices and other homogeneous products has been extensively

studied. However, few commercial activities for aseptic processing of foods containing large
particles have been approved by the Food and Drug Administration (FDA) due to the lack
of information regarding the behaviour of large food particles in a �ow. This information is
the key to determining the residence time distribution (RTD) of particles in the suspension
and the heat transfer coe�cient between the particles and the �uid, which are the two critical
factors in aseptic processing. To ensure that the fastest moving particles get enough thermal
treatment and to keep the slower particles from overheating, the residence time distribution
must be as narrow as possible. The relative velocity between the solid particles and the
�uid has a critical in�uence on heat transfer as well as on the temperature distribution in
the particles. Therefore, the dynamics of the particles and the �uid is the basic information
necessary to design a commercially safe and economical aseptic process [4, 14].
In aseptic processing, the carrying �uid, such as milk, soup, sauce or fruit juices, is typ-

ically non-Newtonian, so the viscosity of the �uid is di�erent at di�erent locations in the
pipe, which further complicates the problem. Sandeep et al. [14] made the �rst attempt to
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model non-Newtonian two-phase �ows in conventional and helical holding pipes. A Cartesian
coordinate system was utilized and the low-order e�ect of back in�uence of the particles on
the �uid �ow was investigated. In this paper, di�erent from Sandeep et al. [14], an orthogonal
helical coordinate system introduced by Germano [15, 16] is utilized. This allows capturing
more accurately the secondary �ow in the planes normal to the main �ow. The extended
FCM method developed by Maxey et al. [11–13, 17], with a collision strategy, is applied to
describe the e�ect of particles on the �ow �eld. The non-Newtonian �uid is simulated by the
Ostwald-de Waele model [18]. The simulation is based on a fully 3D �ow in a helical pipe
and the �ow �eld is computed for any moment of time when particles are travelling from the
inlet to the outlet of the pipe. In this study, the particles of a spherical shape are considered.

MATHEMATICAL MODELLING

Equations of motion for the �uid with particles

Figure 1(a) depicts a schematic diagram of a helical pipe while Figure 1(b) shows the or-
thogonal helical coordinate system. The helical pipe can be viewed as a pipe of radius a
wound around a cylinder of a constant radius, R − a. The parameters that characterize the
geometry of a helical pipe include the pipe diameter, 2a, the coil diameter, 2R, and the pitch,
p. The curvature, �, and the torsion, �, are de�ned as �=R=(R2 + p2) and �=p=(R2 + p2),
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Figure 1. (a) Schematic diagram of a two phase �ow in a helical pipe; and
(b) the orthogonal helical coordinate system.
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respectively. The declining angle of the pipe wounding around the cylinder is

�=
p√

p2 + R2

The governing equations for a non-Newtonian �uid �ow in a helical pipe [2, 3] that account
for gravity as well as the in�uence of particles on the �uid �ow are

∇ · v=0 (1)

�f
Dv
Dt
=−∇P +∇ · �∇v+ �fg+ f (2)

where f =(fs; fr; f�) represents the momentum transfer resulting from all particles, which
is given by the sum of the source terms obtained accounting for the contribution of each
particle. The derivation of the momentum source term f is discussed in detail later on. In the
orthogonal helical coordinate system introduced by Germano [15, 16], the scale factors are
expressed as

hs=1+ �r sin(�+ �); hr =1; h�= r (3)

and Equations (1) and (2) become
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The following expression for the e�ective viscosity of a power law �uid is used to evaluate
the viscosity of a non-Newtonian �uid:

�=m[ 12 (� :�)]
(n−1)=2 (6)

where � is the rate of deformation tensor and the expression for (� :�) is given by
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Momentum source term induced by particles

A force-coupling method (FCM) developed by Maxey et al. [11–13, 17] is utilized to simulate
the source term incorporated into the momentum equation to account for the presence of the
particles. The general principle of FCM is to utilize a localized body force f(x; t), which
is a resultant force of all particles, to represent the e�ect of the particles on the �uid. The
momentum source term is no longer a Dirac delta function but is spread on the numerical
mesh by using a �nite-sized envelop with a spherical Gaussian distribution. The equations for
�uid motion are also solved in the domain occupied by the particles.
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The body force generated by N spherical particles centred at Y(n)(t) (n=1; 2; : : : ; N ) is

f(x; t)=
N∑
n=1

[
F(n)�(x −Y(n)(t)) +G(n)ij

@
@xj
�′(x −Y(n)(t))

]
(8)

where both �(x) and �′(x) are Gaussian functions:

�(x)= (2�	2)−3=2 exp(−r2=2	2) with r= |x| (9)

The length scale, 	, for �(x) is set in terms of the particle radius, ap, as

	=
ap√
�

(10)

The length scale 	′ for the second envelop, �′, is set as

	′=
ap

(6
√
�)1=3

(11)

It should be noted that the existing formulation of FCM is derived for Newtonian �uids; the
utilization of this method for a power-law �uid is an approximation utilized in this paper; in
particular, length scales given by Equations (10) and (11) are strictly derived for Newtonian
�uids only.
The �rst term in the brackets on the right-hand side of Equation (8) refers to a force

monopole, F(n), for the nth particle, which physically equals to the hydrodynamic drag on the
nth particle. The second term in the brackets on the right-hand side refers to a force dipole,
G(n)ij , for the nth particle. The strength of the force monopole is determined by the sum of
the external force F(n)

ext
acting on the particles and the inertia of the particle:

F(n) =F(n)
ext − (m(n)p −mf )dv

(n)
p

dt
(12)

where v(n)p (t) is the particle velocity, which is calculated by averaging the �uid velocity over
the region Dp occupied by the particle:

v(n)p (t)=
∫
Dp
v(x; t)�(x −Y(n)(t)) d3x (13)

The only external force Fext acting on the particles suspended in the �uid is the buoyancy
force. There is no need to include various �uid forces acting on a particle (such as the Magnus
and Sa�man lift forces or the drag force) since there forces are all internal to the �ow system
and their in�uence is captured directly by the simulations.
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The buoyancy force exerted on a particle can be computed as:

Fb = (4=3)�a3p(�f − �g)g (14)

In the helical coordinate system, the above forces sum up to the following equations for the
s; r, and � projections of the total external force on the particles:

Fs = 4
3�a

3(�f − �p)g sin � (15a)

Fr = 4
3�a

3(�f − �p)g sin � sin � (15b)

F� = 4
3�a

3(�f − �p)g sin � cos � (15c)

In addition, to prevent particles from overlapping each others domains or penetrating into the
wall, an additional inter-particle and particle–wall external short-range repulsive force F′ is
added to the force F for each particle, as suggested by Glowinski et al. [8]:

F′(n) =
N∑

n=1; m�=n
FP(n;m) + Fw(n) (16)

The �rst term on the right-hand side of Equation (16) represents the force exerted on the nth
particle by the N − 1 other particles and the second term represents that exerted by the pipe
wall. The particle–particle force is calculated as follows:
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(17)

where d(n;m) = |Y(n)−Y(m)| is the distance between the centres of the nth and mth particles, a(n)p
is the radius of the nth particle, and ”P is a small positive sti�ness parameter. In Equation (17),

 is the force range, which is the distance between the surfaces of two particles (measured
along the line that connects their centres) at which the contact force is activated; 
 is set
to one mesh size in this paper. The particle–wall force is modelled as the force between a
particle and the imaginary particle located on the other side of the wall � (a mirror image of
the particle with respect to the wall) (see Figure 2(a)):
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(18)

where d(n)′= |Y(n)−Y(n)′| is the distance between the centres of the nth particle and the centre
of its mirror image, Y(n)′ is the position of the imaginary particle, and ”w is another sti�ness
parameter. The sti�ness parameters are taken as ”p = 8:15× 10−5 m3 N−1 and ”w = ”p=2.
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Computing fluid flow field in the absence of particles

Inlet condition: Fully developed 
velocity profile and specific 

particle arrangement

Computing velocities and trajectories of particles for 
the given flow field 

Estimation of the particle source term in the 
momentum equation by FCM 

Solving continuity and momentum equations 
with the particle source term 

Check for 
convergence 

No

Information about fluid velocity and particle 
velocities and positions 
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Figure 2. (a) Schematic diagram for calculating contact forces of inter-particle and
particle–wall collisions; and (b) Flowchart of the overall computational algorithm.
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Similarly to the velocity, the angular velocity of the nth particle is calculated as follows:

�(n)
p =

1
2

∫
Dp
!(n)(x; t)�′(x) d3x (19)

The force dipole, G(n)ij , in Equation (8), which is introduced to improve the �ow representation,
consists of a symmetric part and an anti-symmetric part. The anti-symmetric part of G(n)ij
is related to the external torque on the particle, and since the moment of inertia of the
particles is neglected, the anti-symmetric part of the force dipole is neglected. The algorithm
for computing the symmetric part of G(n)ij (the stresslet) involves the solution of a 5N × 5N
liner system and is given in Appendix A of Dance and Maxey [19].

COMPUTATIONAL PROCEDURE

To solve a 3D �ow problem, three velocity components at the inlet and the pressure
at the outlet must be speci�ed. In this paper, a fully developed velocity pro�le is speci�ed as
the inlet pro�le of the �uid to the helical pipe. A no-slip boundary condition is speci�ed at
the wall of the pipe.
A uniform mesh is generated on an evenly spaced grid in the axial, radial, and circum-

ferential directions. An implicit time-integration scheme and the time marching procedure
introduced by Patankar and Spalding [20] is adopted to solve the continuity and momentum
equations. The SIMPLE algorithm is utilized on a staggered grid and the longitudinal and
cross-stream pressure gradients are uncoupled. The discretized equations are solved iteratively
by successive applications of the TDMA (tri-diagonal matrix algorithm).
The continuity and momentum equations (Equations (4) and (5a–c)) for the �uid phase are

�rst solved in the absence of particles. Once the information about the �uid phase motion is
obtained, the linear velocities of the particles are determined from Equation (13). The source
term de�ned by Equation (8), which accounts for the in�uence of particles on the �uid, is
calculated using the force-coupling method. The continuity and momentum equations are then
solved again taking the particle source term into account, and the procedure is repeated until
the following convergence criterion is met:

‖r̂(k)‖∞
‖Us; f‖∞

610−5 (20)

where r̂ is the residual of the pressure correction equation obtained from the continuity equa-
tion when using the SIMPLE method. The superscript (k) refers to the kth iteration. Us; f is
the mean �ow velocity. After the particle velocities are obtained from Equation (13) at a
speci�c moment of time, the displacements of particles are computed at this time step. The
�owchart of the overall computational algorithm is shown in Figure 2(b).
Computations were performed on a NCSU supercomputer using a single 208 Intel Xeon

3:0 GHz processor. A typical CPU to investigate the process between the moment when the
particles are released and the moment when the particles exit the pipe for a 51× 21× 21
uniform mesh with a time step of 0:025 s is about 360 h (when the mean �ow velocity is
0:5 ms−1).
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RESULTS AND DISCUSSION

In this paper, a helical pipe whose length is 1m and whose diameter is 5:08 cm, built by
coiling the tube around a cylindrical mandrel (whose diameter is 60 cm) is considered; the
pitch of the helical pipe is 2cm. At the inlet, a fully developed parabolic axial velocity pro�le
is imposed, the radial and circumferential velocity components are assumed to be zero. The
uniform atmospheric pressure at the outlet of the pipe is speci�ed. The particles are assumed to
be spherical with a diameter of 0:8cm. The density of the particles is assumed to be the same
as that of the �uid. Nine particles are initially introduced at the pipe inlet as �xed obstacles
(they initially have zero velocities). The �ow in the whole pipe attains steady-state, and then,
at t=0 s, the particles are suddenly released, and the cluster of nine particles propagates
through the pipe. This makes the �ow unsteady, depending on the positions of the particles
which are now carried by the �uid. In this study, two cases, A and B, of particle con�guration
at the inlet are investigated. For Case A, the particles are placed at the inlet with the same
radial position (half of the pipe radius) and the same angle between neighboring particles,
as shown in Figure 3(A). For Case B, the particles are placed at the inlet with the same
angular interval between them (as in Case A), but at di�erent radial positions, as shown in
Figure 3(B). The interaction between the particles and the �ow �eld is reciprocal. Both the
e�ect of the particles on the �uid �ow and the e�ects of the �ow velocity and di�erent
positioning of particles at the inlet of the pipe on particle trajectories and the residence time
distribution are investigated.
When there are no particles in the �uid, the maximum of the axial velocity is displaced from

the pipe axis to the wall. The secondary �ow induces mixing in the �uid. The phenomena of
the displacement of the axial velocity and the occurrence of the secondary �ow are discussed
in detail in Cheng and Kuznetsov [2, 3]. When particles are travelling in the �uid, the impact
of the particles on the �uid changes the �ow �eld. First, the case in which the centreline
velocity of 1:0 ms−1 and the mean velocity of 0:5 ms−1 (Case A1) is investigated. To show
the �uid �ow and the trajectories of the particles, the helical pipe is stretched and viewed
from an axial cut view. Figure 4(a) shows the contour lines of the �uid axial velocity when
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Figure 3. Initial positions of particles at the pipe inlet (Cases A and B).
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0.1 0.16 0.2 0.3 0.6 0.8s=0 1(m)

(a)

(b)

(c)

Figure 4. Contour lines of the axial velocity of the �uid �ow in the axial cut view of the
pipe for: (a) no particles introduced at the inlet; (b) t=0:025 s (particles are close to the

inlet); and (c) t=0:3 s (particles are between cross-sections 2 and 3.

no particles are introduced at the inlet of the pipe while Figures 4(b) and 4(c) show the
case with particles. Figure 4(b) shows the contour lines of the �uid axial velocity when the
particles have just entered the pipe (t=0:025 s). Figure 4(c) shows those when the particles
have traveled for 0:3s and are concentrated between cross-sections 2 and 3. Figure 4(b) shows
that vortices have developed close to the pipe inlet due to the presence of the particles. This
is because the particles were introduced to the inlet of the pipe as �xed obstacles, and then
suddenly released at t=0. It also shows that the vortices are not symmetric, which happens
because the pipe is not straight but a helical one. The parabolic distribution of the axial
velocity gets deformed as the distance of the cross-section from the inlet increases and the
maximum of the axial velocity gets displaced to the outer wall. When the particles are between
cross-sections 2 and 3 (Figure 4(c)), the contour lines of the axial velocity clearly show that
the particles create a disturbance in the �ow �eld.
To show the in�uence of the particles on the �uid �ow, the axial velocity and the secondary

�ow for Case A1 in cross-sections 1–6 (the positions of these cross-sections are displayed in
Figure 4(c) at t=0:3s (at this moment of time, the particles are between cross-sections 2 and
3), are presented in Figure 5. In cross-section 1, since it is close to the inlet, the parabolic
pro�le of the axial velocity is not deformed signi�cantly and the secondary �ow is also not
strong. The particles have just passed cross-section 2. The vector plot of the secondary �ow
at cross-section 2 shows that the passing of particles through this cross-section increased
the strength of the secondary �ow and caused an irregular distribution of the axial velocity.
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(1)   (2) 

(3)   (4) 

(5)   (6) 

Figure 5. Contour lines of the axial velocity (left) and vector plots of the secondary
�ow (right) in the cross-sections 1–6 at t=0:3 s, the positions of these cross-sections

are displayed in Figure 4(c) (Case A1).

The particles most strongly in�uence the �ow in the cross-section in which the particles are
passing at a given moment of time. The deformation of the axial velocity distribution and
strengthening of the secondary �ow are still signi�cant in cross-section 3 but less than those
in cross-section 2 because the particles have not yet reached cross-section 3. The e�ect of the
particles on the �ow can be observed in cross-section 4 from the contour lines of the axial
velocity but it is not apparent in the vector plots of the secondary �ow. However, when a
cross-section is located too far downstream from the particles (cross-sections 5 and 6), the
e�ect of the particles becomes negligible.
Figures 6 and 7 depict the axial and radial positions of the particles at di�erent moments

of time for Case A1 (in Figure 6, particle positions are projected on the axial cut view
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Figure 6. Snapshots of the particles at di�erent moments of time (Case A1).
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Figure 7. Radial positions of the particles at di�erent moments of time (Case A1).

of the pipe). In the beginning, the axial velocity pro�le of the �uid �ow remains close to
parabolic. Since for this case the particles are initially introduced in the same radial positions
at the inlet, once they are released, they enter the pipe parallel to each other and the layout
of the particles does not change signi�cantly during the �rst 0:2 s (see Figures 6 and 7 for
t=0:2 s). However, the deformed axial velocity distribution and the secondary �ow induced
by the helical pipe soon cause the particles to move away from each other. The factors that
a�ect the particle trajectories include the local velocity of the �uid �ow, the particle inertia
as well as particle–particle and particle–wall interactions. Figure 8 displays the projections
of the particle trajectories on an axial cut view of the pipe while Figure 9 depicts the axial
velocities of the particles versus their axial positions. Both Figures 8 and 9 are computed for
Case A1. In the beginning, all particles travel parallel with each other with the same axial
velocity. At s=0:05 m, the particle trajectories start overlapping. At s=0:57 m, a ‘mixing
event’ occurs. Figure 9 shows that once the particles are released, they �rst accelerate (the
inertia of the particles is accounted for) and attain the same axial velocity within a very
short time and very short distance from the inlet. The acceleration period of the particles is
shown on an enlarged scale in a small separate �gure in Figure 9. The decrease of the axial
velocity of the particles, which follows the acceleration period, may be caused by moving the
particles to di�erent radial positions. After approximately 0:1 s, the secondary �ow begins to
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Figure 8. Trajectories of the particles viewed in the axial cut view (Case A1).
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Figure 9. Axial velocities of the particles in the pipe versus their axial positions (Case A1).

show visible in�uence and the particles move to di�erent radial positions which correspond
to di�erent axial velocities.
To investigate the e�ect of the mean �ow velocity on the residence time distribution (RTD)

of the particles in the pipe, the inlet con�guration of Case A, in which nine particles are
introduced at the same inlet radial positions, is computed for three more cases with di�erent
mean �ow velocities (Cases A2, A3 and A4, respectively). The average axial velocity and
the residence time of the particles are listed in Table I. It is shown that the mean, minimum,
maximum, and standard deviation of the particle residence time (RTmean, RTmin, RTmax, and
RTstd, respectively) are signi�cantly a�ected by the mean �ow velocity. As expected, particles
travel faster when the mean �ow velocity is increased. The increase of a standard deviation
means a more scattered residence time distribution of the particles, which shows that the
e�ect of the secondary �ow on the particles is more signi�cant when the �uid axial velocity
is small. It can be explained as follows: when the �uid axial velocity increases, the increase
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Table I. Axial velocity and residence time of particles introduced to the inlet of the pipe
at the same inlet radial positions, computed for di�erent mean �ow velocities, Us; f .

Us; f = 0:50 ms−1 (A1) Us; f = 0:30 ms−1 (A2) Us; f = 0:20 ms−1 (A3) Us; f = 0:10 ms−1 (A4)
Particle
No. Us; p(ms−1) RT(s) Us; p(ms−1) RT(s) Us; p(ms−1) RT(s) Us; p(ms−1) RT(s)

1 0.75 1.33 0.50 2.30 0.308 3.25 0.154 6.47
2 0.69 1.46 0.47 2.12 0.283 3.59 0.144 7.04
3 0.63 1.58 0.42 2.39 0.259 3.95 0.131 7.75
4 0.55 1.80 0.37 2.73 0.256 3.58 0.128 7.89
5 0.55 1.83 0.35 2.83 0.260 3.55 0.131 7.04
6 0.65 1.53 0.41 2.49 0.313 3.18 0.155 6.42
7 0.68 1.45 0.47 2.17 0.328 3.01 0.162 6.11
8 0.76 1.33 0.50 2.02 0.327 3.01 0.162 6.06
9 0.77 1.25 0.51 1.97 0.321 3.07 0.160 6.17

RTmean 1.50 2.33 3.35 6.77
RTmin 1.83 1.97 3.01 6.06
RTmax 1.25 2.83 3.95 7.89
RTstd 0.20 0.30 0.33 0.70

of the secondary �ow does not keep up with the increase of the axial velocity. This result is
in agreement with experimental �ndings of Tanyel [21].
To investigate the e�ect of the inlet radial position of particles on their residence time

distribution, Case B (in which the particles are introduced at di�erent inlet radial positions)
is computed using the same mean �ow velocity as was used in Case A1. Figure 10 displays
the snapshots of the particles in the pipe for di�erent moments of time (as in Figures 6
and 8, particle positions are projected on the axial cut view of the pipe). It can be seen
that the particles have already moved away from each other at t=0:2 s, while for Case A1
all nine particles still stay together (see Figure 6, t=0:2 s). This is because in Case B the
particles have di�erent streamwise velocities according to their radial positions. For t=0:2 s,
the distribution of the particles takes the shape of an inclined ‘S’. This shape remains when
t is increased to 0:4 s and even to 0:6 s; however, the particles move away from each other
even further. When time reaches 0:8 s, particle 6 catches up to particle 5 and the S-shape is
deformed. After this point, the deformed axial velocity distribution and the secondary �ow in
the helical pipe make the particle distribution even more deformed. This phenomenon can also
be observed in Figure 11, which depicts the corresponding radial positions of the particles at
di�erent moments of time. At t=0:2; 0:4 and 0:6 s, the radial con�guration of the nine particles
exhibits only a small deviation from the inlet con�guration, but after that the displacements
of the particles from their initial positions are signi�cant.
Table II presents the average axial velocities and the residence times of particles for Cases

A1 and B. The range of the average velocities of the particles for Case B is much greater
than that for Case A, showing that the inlet radial positions of particles signi�cantly impact
the residence time of particles in a helical pipe. The range of the residence times of particles
for Case B is much greater than that for Case A1. The standard deviation of RTD in this
case is 0:43 s compared to 0:20 s for Case A1, that is, the distribution of the residence time
is more scattered, which can also be seen in Figure 12. It is observed in Figure 12 that the
range of the residence time of particles is [1:2s; 2:0s] when the particles enter the pipe at the
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Figure 10. Snapshots of the particles at di�erent moments of time (Case B).
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Figure 11. Radial positions of the particles at di�erent moments of time (Case B).

Table II. Axial velocity and residence time of particles introduced to the inlet of the pipe
at di�erent inlet radial positions, computed for the mean �ow velocity of Us; f = 0:5 ms−1.

Same radial position (Case A1) Di�erent radial positions (Case B)

Particle No. Us; p(ms−1) RT(s) Us; p(ms−1) RT(s)

1 0.75 1.33 0.74 1.35
2 0.69 1.46 0.61 1.64
3 0.63 1.58 0.45 2.23
4 0.55 1.80 0.38 2.70
5 0.55 1.83 0.44 1.98
6 0.65 1.53 0.59 1.68
7 0.68 1.45 0.56 1.75
8 0.76 1.33 0.53 1.86
9 0.77 1.25 0.41 2.43

RTmean 1.50 2.70
RTmin 1.83 1.35
RTmax 1.25 1.96
RTstd 0.20 0.43
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Figure 12. Residence time distribution of the particles introduced to the inlet of the
pipe with the same mean �ow velocity at the same radial positions (Case A1) and

at di�erent radial positions (Case B).

same radial position, while the range of the residence time is [1:2 s; 2:8 s] when the particles
enter at di�erent radial positions.

CONCLUSIONS

A �ow model is developed to simulate a two-phase 3D �ow of a non-Newtonian �uid in a
helical pipe with large particles. The governing equations for the �uid �ow in an orthogonal
helical coordinate system are derived. The forces acting on the particles are analysed. The
in�uence of the particles on the �uid is described by adding a source term to the momentum
equation for the �uid �ow. The source term is computed utilizing the force-coupling method.
The particle–particle and particle–wall interactions are taken into account. It is shown that the
particles have a signi�cant e�ect on the �ow �eld, including the axial velocity distribution
and the strength of the secondary �ow. The trajectories and velocities of the particles are
predicted. The residence time distribution (RTD) of particles is analysed. It is shown that
when the �uid axial velocity decreases, the mean residence time, minimum residence time,
maximum residence time, and standard deviation of the residence time increase. When the
particles are initially placed at di�erent radial positions at the inlet of the pipe, the distribution
of the residence time is more scattered than that for the case of the same inlet radial positions.
It is well known [22–24] that in Poiseuille �ow in a straight pipe, neutrally buoyant particles

collect at a preferred radial location. This phenomenon, called the Segre–Silberberg e�ect, is
attributed to the nonlinear in�uence of inertia, and occurs due to the wall e�ects, velocity
pro�le curvature, and shear force. Computational results presented in this paper do not indicate
the existence of this phenomenon in Poiseuille �ow in a helical pipe. Further research and
numerical simulations performed using �ner meshes and larger number of particles is needed
to give a de�nitive answer on whether centrifugal forces and secondary �ow in a helical pipe
indeed destroy the Segre–Silberberg e�ect or it can be observed under special conditions.
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NOMENCLATURE

a pipe radius, m
ap particle radius, m
Dp region occupied by a particle
f source term induced by particles, Nm−3

F force, N
Fb buoyancy force, N
g gravity, m s−2

G force dipole, Nm
hs; hr; h� scale factors associated with orthogonal coordinates

s; r; �, de�ned in Equation (3)
m consistency factor, Pa sn

mf mass of the �uid in a �nite volume, kg
mp particle mass, kg
n power-law index
N number of particles
p pitch, m
P pressure, Pa
Pr Prandtl number
ReP particle Reynolds number
r radial coordinate, m
R coil radius, m
s axial coordinate, m
t time, s
v velocity vector, m s−1

vf �uid velocity, m s−1

vp particle velocity, m s−1

us; ur; u� velocity components, m s−1

Greek letters

� declining angle
�p sti�ness parameters for particle–particle interactions, m3 N−1

�w sti�ness parameters for particle–wall interactions, m3 N−1

� angle
� curvature, m−1

� e�ective dynamic viscosity of a non-Newtonian �uid, kg m−1 s−1

� kinematic viscosity, m2 s−1

� angular velocity vector, s−1

�f �uid density, kg m−3

�p particle density, kg m−3

� torsion, m−1

	 length scale for force monopole, m
	′ length scale for force dipole, m
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Subscripts

s axial direction
r radial direction
� tangential direction

Superscripts

p particle to particle
w wall to particle
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